
The Case for Intent-Based�ery Rewriting

Gianna Lisa Nicolai
RPTU Kaiserslautern-Landau
Kaiserslautern, Germany
gianna.nicolai@cs.rptu.de

Patrick Hansert
RPTU Kaiserslautern-Landau
Kaiserslautern, Germany
patrick.hansert@cs.rptu.de

Sebastian Michel
RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

sebastian.michel@cs.rptu.de

ABSTRACT

With this work, we describe the concept of intent-based query

rewriting and present a �rst viable solution. The aim is to allow

rewrites to alter the structure and syntactic outcome of an original

query while keeping the obtainable insights intact. This drastically

di�ers from traditional query rewriting, which typically aims to

decrease query evaluation time by using strict equivalence rules

and optimization heuristics on the query plan. Rewriting queries

to queries that only provide a similar insight but otherwise can

be entirely di�erent can remedy inaccessible original data tables

due to access control, privacy, or expensive data access regarding

monetary cost or remote access. In this paper, we put forward IN-

QURE, a system designed for INtent-based QUery REwriting. It

uses access to a large language model (LLM) for the query under-

standing and human-like derivation of alternate queries. Around

the LLM, INQURE employs upfront table �ltering and subsequent

candidate rewrite pruning and ranking. We report on the results

of an evaluation using a benchmark set of over 900 database table

schemas and discuss the pros and cons of alternate approaches

regarding runtime and quality of the rewrites of a user study.

KEYWORDS

Query Rewriting, SQL, Query Intent, LLM, Natural Language

VLDBWorkshop Reference Format:

Gianna Lisa Nicolai, Patrick Hansert, and Sebastian Michel. The Case for

Intent-Based Query Rewriting. VLDB 2025 Workshop: The 2nd

International Workshop on Data-driven AI (DATAI).

VLDBWorkshop Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dbislab/InQuRe.

1 INTRODUCTION

The volume of digital content in various formats has been growing

exponentially for decades. Companies, organizations, and public

administrations generate, capture, and convert user-generated or

application-generated content, such as personal data, transaction

records, social platform interactions, usage and system logs, and

more. Much of this data is not widely accessible to the public, but

is stored in company-owned data lakes or traditional databases. In

contrast, other datasets are available on platforms like AWS S3 or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

Rank DistrictName
1 Kreuzberg
2 Pankow
3 Neukölln
4 Charlottenburg
5 Mitte

O�erId DistrictName Price
1 Kreuzberg 43000
2 Pankow 43000
3 Neukölln 98000
4 Pankow 43000
5 Neukölln 143000
6 Charlottenburg 143000

GroundID DistrictName Value
1 Charlottenburg 1200
2 Charlottenburg 1800
3 Pankow 1000
4 Pankow 800
5 Neukölln 760
6 Kreuzberg 1550

(a) living_quality_ranking (b) avg_income

(c) real_estate (d) groundvalue

DistrictId DistrictName Income
0 Kreuzberg 90000
1 Charlottenburg 60000
2 Neukölln 12000
3 Pankow 85000
4 Mitte 30000

Figure 1: Four tables with di�erent information about Berlin

districts. Intuitively, if not all are accessible by a user, main

insights can be drawn from the others. A case for intent-

based query rewriting.

traditional websites, either free of charge, for a fee, or are perhaps

already available at the user’s location. The bene�t of intent-based

query rewriting kicks in when a query is formulated over tables

that are not directly available to the user or not available at all

due to missing access privileges. The query given in SQL needs

to be rephrased to operate on available data and keep the user

intent intact. Unlike work in classical query rewriting, which uses

equivalence rules from relational algebra, a core observation is that

the query itself does not have to be equivalent, i.e., it need not return

the identical set of tuples. It is also di�erent from approximate query

processing, where the task is to return an approximate answer at

the bene�t of fast query execution of the same query, where the

similarity of result tuples or closeness of aggregate values again

assesses the answer’s accuracy. For intent-based query rewriting,

consider a user interested in �nding real estate properties built on

land with high land values to guarantee a safe investment. Knowing

that there is such data (e.g., Figure 1 Table d), a SQL query could

look like the one shown in Listing 1.

Listing 1: Sample Query

1 SELECT DistrictName

2 FROM groundvalue

3 GROUP BY DistrictName

4 ORDER BY AVG(value) DESC

Now, consider the user is working, e.g., with a data lake that

does not contain that speci�c table but does contain Tables a–c).

They also hold information about districts in the same city that is

closely related to the original query. With human knowledge, the

query could arguably be rewritten to one involving information

on schools, average income, businesses, public transport, and other

https://github.com/dbislab/InQuRe
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


Listing 2: Two queries with the same intent as Listing 1

1 SELECT dname SELECT dname

2 FROM real_estate FROM avg_income

3 GROUP BY dname ORDER BY income DESC

4 ORDER BY AVG(price) DESC

factors. Syntactically, the query would be entirely di�erent, but the

goal the user had in mind could still be met. LLMs exhibit human-

like comprehension in many tasks and, in particular, do very well

in understanding SQL queries and database schemas. They also

understand factors that in�uence—to stick to the above example—

real estate prices or living quality, which are a mixture of many

factors perhaps stored in di�erent databases. Once provided with

an input query, the LLM is (ideally) able to derive the intent and

�nd other forms of queries that deliver the same insights to a user

while operating on di�erent tables, like the ones shown in Listing 2.

With a growing number of available datasets (databases) at hand,

this appears feasible but requires an in-depth investigation and

evaluation of potential approaches. Of course, any such approach

dependy on the quality of the LLM’s outputs. Assuming that it is

feasible, �nding one or multiple alternate intent-equivalent queries

for a given user query that operate on di�erent datasets can be

helpful in many scenarios, including:

Enabling Query Execution over Inaccessible or Monetarily

Expensive Data: It allows executing queries originally phrased

over unavailable datasets, for instance, because of access control

mechanisms induced by restrictive data ownership or other privacy

concerns. Also, obtaining access to datasets behind a potentially

expensive paywall could be mitigated.

Querying Vast Dataset Collections: With the advent of data

lakes, the number of available datasets may exceed what users can

manually inspect for applicability with reasonable e�ort. Intent-

based query rewriting allows users to formulate queries over imag-

inary schemas ideal for their information need. The system then

automatically rewrites these using existing datasets. Hence, users

can forgo the tedious task of manually sighting available datasets.

Detection of Divergent Facts: With multiple di�erent queries

that share the same intent, users or automated processes can detect

divergent observations and, therefore, potentially uncover untruth-

ful claims or wrong facts derived from false or incomplete data.

Faster Query Execution: Finding alternate queries, very much

like in the traditional sense of query rewriting, can lead to faster

query execution if the database tables referenced in the alternate

query are smaller, more suitably indexed, or already locally avail-

able. However, this assumes that the time needed to rewrite a query

does not overshadow the positive e�ect on the query runtime. For

remote access to LLMs, as we do in this paper, this seems infeasible.

1.1 Problem Statement

Given a SQL query ħ and a set of tables Đ by their schema informa-

tion, we want to determine a ranked list of query rewrites Ď where

each Ĩğ ∈ Ď gives the same insights as ħ as intended by the user

and is executable over a subset of the tables in Đ . If tables come

from di�erent database schemata, we assume they carry a pre�x

that uniquely identi�es the table in Đ .

1.2 Contributions and Outline

With this work, we make the following novel contributions:

• We introduce the problem of intent-based query rewriting.

• With INQURE, we present a �rst working solution to this

problem.

• We describe the work�ow details, including alternate solu-

tions for parts of the building blocks.

• We discuss problems arising from the use of an LLM for

query rewriting and show how we circumvented their hal-

lucinations.

• We report on the �ndings of an experimental evaluation

that assesses the meaningfulness of rewrites by means of a

user study and further report on metrics like runtime and

LLM usage cost.

The remainder of this paper is organized as follows: Section 2

reviews related work. Section 3 presents a high-level view of our

approach and motivation for the individual building blocks that are

then discussed in Section 4 and Section 5. Section 6 reports on the

setup and �ndings of our experimental evaluation, while Section 7

concludes the paper and gives an outlook on future work.

2 RELATED WORK

Query Rewriting. The generic concept of query rewriting [1, 2,

12] is a well-studied key ingredient of relational database systems.

An SQL query submitted to the database engine is transformed into

an internal tree-structure representation typically referred to as a

query plan. Query rewriting then describes the task of modifying

the query to a query that produces the same output but can be

executed faster or with less consumed resources, depending on

the objective. The classic textbook example of query rewriting

transforms the query plan using equivalence rules over relational

algebra operators and a set of heuristics for improving plans, like

pushing down selection operators to eliminate tuples that will not

be part of the result as early as possible. Here, equivalence means

that the optimized plan still delivers the exact same result tuples

as its unmodi�ed version. More advanced techniques consider the

non-trivial task of query unnesting [15, 21–23, 30], as nested queries

with dependencies of inner queries to the outer part of the query

can lead to poor performance. Ordonez [27] focuses on optimizing

recursive SQL queries using indexing and relational algebra rules.

There are also di�erent approaches for optimizing nested queries,

summarized and corrected by Ganski and Wong [11].

The mentioned approaches mostly keep the SQL queries equiva-

lent regarding a certain set of rules. However, as mentioned above,

this is not generalizable to all kinds of SQL queries. Therefore, Dong

et al. [8] use synthesis-based techniques for rewriting queries. Al-

though their system does not need prede�ned rules, it still does

not generalize to complicated queries. Thus, some more recent

approaches try to incorporate machine learning into the process.

These methods do not always keep the query equivalent regarding

rules as in traditional query optimization. However, they still al-

ways maintain the result of the query. One of these approaches is

proposed by Zhou et al. [35]. Their approach combines traditional



rule-based methods with learned methods to overcome the problem

of rewriting not being applied adaptively.

Liu and Mozafari [19] go one step further by using LLMs for

query rewriting. They employ natural language rewrite rules to

guide the LLM in the process of rewriting the query. Their approach

shows that LLMs produce promising results for query rewriting

and can adapt to di�erent queries. However, one drawback of their

approach is that rewrites from LLMs can be incorrect and thus some-

times need correction. This adds a further step in their rewriting

process. Ye et al. [33] also use LLMs for query rewriting. While their

goal is not to optimize the query performance, they still use the

LLM as a rewriter. To further improve the LLM’s result quality, they

propose to use distillation, a technique incorporating �ne-tuning

of the LLM. Their approach also shows promising results.

The work on SODA by Blunschi et al. [4] proposes ways to

expand queries to capture tables referring to identical or similar

concepts not referenced in the original query. Querying for a table

clients would then also include the table customers as both names

are deemed synonymous by their employed ontology. This does not

change the query but makes additional tables that carry identical

or similar schemas usable. With our use of LLMs, which have a

deep understanding of natural language, concepts like synonymy

are directly usable, too. In fact, the prompt we send to the LLM

contains explicit hints to use such concepts.

SQL Query Similarly. Since our goal is not to generate an equiv-

alent query but one with the same intent, we need to evaluate how

similar the generated query’s intent is to the original one. Tradi-

tional measures for query similarity often work syntactically and

may be as simple as applying the Levenshtein distance [18] to the

query string. More complex measures may compare the columns

referenced in di�erent parts of the query [5, 17] or the distance

between the SQL syntax trees [5]. To incorporate the semantic

meaning of the queries, Köberlein et al. have proposed a graph-

based approach, which represents queries as nodes in a graph and

then measures their distance as the lowest-cost path between them

[16]. For our approach, queries may di�er signi�cantly in their

structure, as we are not interested in equivalent queries but rather

in queries that yield the same intent. Thus, simple syntactic mea-

sures are not applicable.

Other approaches, like Borodin and Kanza [5], compare the re-

sults of the queries as a proxy for the intent. Similarly, Guo et al.

derive an intent similarity for document retrieval from snippets

of the documents [13]. Arzamasova et al. [3] derive a similarity

measure for clustering queries with similar user interests based on

the access areas of the queries. For our approach, none of these

measures is applicable since the results of the original query cannot

be retrieved. Instead, we opted to use embeddings or the LLM itself

to derive a similarity measure, as discussed in Section 5.2.

3 THE INQURE WORKFLOW

Figure 2 illustrates the two main phases of INQURE. We dive into

the details of the phases and sub-phases below but want to give

a brief high-level walkthrough and rationale before. The core el-

ement of the work�ow is the access to an external LLM that can

understand and also produce SQL queries and natural language

schema information repository
table filtering

candidate
ranking

candidate
pruning

LLMs

user 
input

SQL

query rewrite

x
x

query execution

Figure 2: Overall work�ow consisting of two consecutive

phases: (1) Table Filtering and Rewriting and (2) Candidate

Cleanup and Execution

Listing 3: E�ect of LLM hallucination

1 --original query --proposed rewrite

2 SELECT best_team SELECT team_long_name

3 FROM baseball; FROM soccer_1_Team;

text. Large Language Models (LLMs) like ChatGPT have revolution-

ized how machines generate text, understand code, and process

SQL by leveraging deep learning and vast datasets. They persis-

tently improve and the latest models show a human-like level of

comprehension and even creativity.

While using an LLM can still be feasible given a smaller number

of tables, it can cause problems if very many tables are available.

First, it can result in very high monetary costs (for not free-of-

charge LLMs) and high latency due to long requests. Second, and

perhaps more limiting, is the rise of LLM “hallucinations.” They

can occur when there are too many options to choose from, which

can result in improper rewrites, and despite the generally amazing

performance of ChatGPT to handle SQL, these rewrites can be far-

o�, cf. Listing 3. While one may argue that moving the attention

from baseball to soccer is reasonable as both are sports, querying

for all team names is a stark contrast to aiming at the best teams.

To counter this, we employ an upfront table �ltering phase to put

the focus on seemingly appropriate tables that are then fed into the

LLM. Then, the LLM is asked to provide not only one but multiple

rewrites to increase the chance of �nding feasible rewrites out of

the proposed ones, as it is observed and also reasonable to assume

that the �rst pick by the LLM can be wrong. The proposed rewrites

still need to be cleaned up and organized to remove non-executable

queries and avoid proposing near-duplicate rewrites to users that

di�er only marginally, like in a super�uous predicate or a di�erence

in the SELECT clause.

4 PHASE 1: FILTERING AND REWRITE
GENERATION

The goal of the �rst phase is to generate a set of candidate rewrites

for a given set of tables Đ and the input SQL query. As described

before, giving too many tables to the rewriter could result in high

costs and hallucinations when working with LLMs. Intuitively, this

can be mitigated by reducing the number of available tables to a



meaningful subset. On the other hand, when providing too few

or the wrong tables, the rewriter might be unable to produce any

relevant rewrites. For this reason, we �rst investigate appropriate

techniques to pre�lter the tables.

4.1 Table Filtering

We want to eliminate tables unrelated to the topic of the query.

If we only use tables that are, e.g., synonyms, we could miss in-

teresting tables that are, e.g., correlated to the original ones. We

considered multiple approaches for table �ltering. One idea was

to use knowledge databases like WordNet [9, 20]. Such databases

include topics or words and their relationships. Thus, they would

be usable to �nd related topics for the tables in the query. There

are two problems with this: First, we would still need to somehow

identify the topics from the tables or extract the words making

up the table names. Generally, extracting topics from a document

could be done with latent semantic analysis (LSA), as described

by Deerwester et al. [7]. However, LSA focuses on texts and not

on single words like table names and can therefore not be used

here. The other reason against knowledge databases is that LLMs

also include much of their knowledge since they are trained on a

lot of data. Therefore, it is easier to directly use an LLM to deduce

topics from the tables and compare those using the knowledge from

its training—which is possibly more than the knowledge in such

a knowledge database. Compared to a knowledge database, the

only drawback of an LLM might be the cost, as some knowledge

databases are openly available while many LLMs are fee-based.

Overall, we investigated the following three di�erent approaches

for table �ltering:

Embedding Filter: We decided to apply word embedding on

the query tables and the tables provided in Đ . However, we cannot

directly supply the unaltered table names into an embedder, as

they can be a combination of di�erent words. Thus, an embedder

designed to work with single words might not know the compound

table names. If a word is not known by an embedder, it may end up

being represented by the empty vector, which should be avoided

as it is an inadequate representation. To prevent this, we used

the en_core_web_lg pipeline [32] from spaCy [14] since it also in-

corporates tokenization and annotation of words. After multiple

pipeline steps, the tokenized words can be vectorized and averaged

to represent the table. We use the largest available model for the

English language, which generally has a higher accuracy, accord-

ing to spaCy’s website [31]. A table passes the �lter if the cosine

similarity between its spaCy embedding vector and any vector of

the tables referenced in the query is larger or equal to a parameter

Ċ . For our evaluation, we set Ċ to 0.4. This approach is pretty simple,

so we do not expect it to perform exceptionally well, especially

since we need some tables that are only very vaguely connected to

pass the �lter, e.g., groundvalue and income from the introductory

example.

Simple LLM Filter: We wrote an LLM prompt that takes all

our database tables and asks which ones are relevant for rewriting

the given SQL query. One thing to keep in mind is the limited

amount of in- and output tokens one API call of the LLM can

handle. The so-called context window restricts the combination of

input, output, and reasoning tokens. For instance, in GPT-4o, the

context window currently has a size of 128,000 tokens, while the

number of output tokens is further limited to 16,384 tokens at most

[25]. If we now want to give a prompt including many table names

to the LLM, these limits may be exceeded. Therefore, we partition

our table names into packages that are small enough for the LLMs

context window and output size. The maximum package size can

be calculated from the average amount of tokens needed for one

table name, the maximum output length, and the expected percent

of returned tables, i.e., how many of the tables are deemed relevant.

We use the following prompt to the LLM: “I want you to decide

which from the given tables are useful to answer a given query. It

is important that the chosen tables can help to answer the query

either directly or indirectly. If a table cannot be used directly, think

about if it can be used due to it being correlated regarding human

intuition. E.g. tables on park locations and crime rates could help to

know areas with high rent. So, in conclusion, the tables should be

usable to answer the query such that the information gain stays the

same for a human. Synonyms, hyponyms, correlations and similar

topics should be important when choosing the usable tables. I have

the following SQL query: {query} Here are tables from my database

(just the names): {name_list} If none of these tables are usable, then

only respond with ’No tables usable’. If some tables are usable, only

respond with the names, separated by semicolons.”

Complex LLM Filter: Here, we just ask the LLM for some ta-

ble names it would suggest for rewriting a given query without

providing it with the tables that can be accessed. We instruct

the LLM with a prompt like “The tables should be usable to an-

swer the query such that the information gain stays the same for

a human. Synonyms, hyponyms, correlations, and similar topics

should be important when choosing the usable tables.”, which pro-

duces for a query SELECT best_team FROM baseball; the re-

sult baseball_teams; mlb_teams; team_rankings; sports_statistics;

baseball_standings; fan_ratings; championship_winners; sports_clubs;

stadium_locations; player_performance; sponsorship_deals. We then

compare the suggested tables to our database tables. A database

table is considered relevant if the cosine similarity of its name’s

embedding to that of at least one suggested table is higher than or

equal to a parameter Ā . We set Ā to 0.7 for our evaluation.

4.2 LLM-based Rewrites

To rewrite the query using an LLM is the central step of INQURE.

For a given input query, we want to generate Ĥ rewrites that are as

diverse as possible. To this end, we investigate the following two

alternatives:

Simple Rewriting: This straightforward approach is inspired by

Liu and Mozafari’s prompts for query rewriting [19]. The general

idea here is to describe to the LLM what exactly it should do. To

avoid non-executable aggregates of columns, like averages on string

columns, we provide the data types along with the table and column

names. Moreover, the LLM is given all foreign keys that a table

might have. We do this to improve the joining behavior in the

suggested rewrites. Using all this information we prompt the LLM

to produce a certain number of diverse SQL rewrites.



We use the following prompt to the LLM: “I have the following

SQL query: {query} I do not have access to the tables needed in the

query. I do have the following tables in my database (written in

the format: table: column1 type1, column2 type2 \n Foreign keys (if

existent)): {�ltered_tables} Keep the foreign keys in mind if you join

any tables. I want to have queries that keep the same human intent

and satisfy the information need as the given query. These new queries

should use the provided tables and columns from my database. Give

me {n} alternative queries. They should be as diverse as possible. Only

give the SQL queries and nothing more. Use a semicolon to separate

the queries.”

After receiving the answer to our prompt, we can separate the

produced queries and start with the post-processing phase if enough

rewrites are found.

Rewriting via Natural Language: Inspired by the encouraging

results of using LLMs in NL2SQL, we do not give an SQL query

to the LLM but a natural language (NL) text. That means, before

prompting the LLM for the rewrite, we use another LLM request

to get the query’s intent in textual form. Along with it, we then

include the tables with their foreign keys and the columns with

their types in the prompt, just like in the simple approach. We also

include the number of queries we want to produce. The complete

prompt can then be posed to the LLM. The answer from the LLM

to the prompt contains the alternative queries in the same format

as in the simple approach. This allows us to process the reply in

the same way from here on out.

Compared to the simple approach, we now need one more API

call and, thus, more tokens and time. However, since the intent is

already abstracted from the SQL query, the LLM can potentially

write more general queries without adhering too much to the orig-

inal query. Since a query with the same intent does not need to

be structurally or semantically similar to the original query, this

might give this approach an advantage over the simple approach.

5 PHASE 2: PRUNING AND RANKING

The goal of the second phase of INQURE is to take the candidate

rewrites from the �rst phase and return them to the user in a usable

manner. To this end, we �rst prune candidates with joins on non-

joinable columns. We then rank the remaining candidates based on

how well they match the intent of the original query. Finally, we

correct non-executable candidates where necessary.

5.1 Rewrite Pruning

Here, we want to eliminate queries that will not work with our

schema. An example of such a query can be found in Listing 4. This

querymay seem reasonable for �nding students with pets. However,

with more knowledge of the database schema, we know that the

tables for dorm students and students with pets do not originate

from the same database. Thus, the IDs given to the students in both

of these tables will not match with each other, resulting in false

query results. Therefore, we want to eliminate such queries.

5.2 Rewrite Ranking

After pruning, we want to rank the remaining queries such that

better-�tting ones appear earlier in a similar manner to web search.

Listing 4: Example of a Prunable Query

1 SELECT CONCAT(Fname, ' ', LName) AS full_student_name

2 FROM dorm_1_Student d, pets_1_Has_Pet hp, pets_1_Pets p

3 WHERE d.StuID = hp.StuID AND hp.PetID = p.PetID

4 AND p.PetType = 'Cat'

To this end, we consider two di�erent similarity measures: intent-

based similarity and structural similarity. Using these measures,

we rank the rewritten queries either directly or using a Maximal

Marginal Relevance (MMR) [6] approach, as described below.

5.2.1 Intent-Based Similarity. For ranking the rewrites, we need

to measure how similar the intent of the rewritten query is to the

original one. As discussed in Section 2, traditional approaches for

measuring query similarity are not applicable in our case. They fo-

cus either on syntactic similarity, which is allowed to di�er widely

in our case, or on the results of the queries, which we cannot re-

trieve for the original query. Instead, we investigate two approaches

employing embeddings or the LLM itself to derive an intent-based

similarity measure.

As our �rst measure, we compare tables to each other based on

their spaCy [14] embedding using a large model [32] in an approach

we coined Embedding Similarity. The idea behind it is that dif-

ferent queries with the same intent should still use tables that are

related to each other in some way. Here, we try and capture this

relation with the embeddings and consider the average pairwise

cosine similarity between embeddings of tables of the rewritten

query and the original query. We use our own tokenization for

splitting the table names to be sure that the table names are split ac-

cording to both snake case (snake_case) and camel case (CamelCase

or camelCase), as both often appear in table names.

As an alternative, we investigate LLM Similarity Scores: We

query the LLM with the rewrites and the respective original query.

The task of the LLM is to assign a score between 0 and 1 to each

rewrite that re�ects how similar its intent is to the original query.

However, LLMs cannot count. Depending on the amount of given

queries, not enough similarity scores may be returned by the LLM

(i.e., not one score per query). This problem can be solved by giving

the rewrites to the LLM in batches. Returning the correct number

of scores works most of the time for a small number of queries.

The only drawback of this batched approach is the increase in

runtime and tokens due to multiple API calls, each containing the

instructions again.

We use the following prompt for the LLM: “ I will give you a

single SQL query called original query. I will also give you multiple

other SQL queries called alternative queries. For each of the alternative

queries, I want to calculate its similarity to the original query. These

similarities should be �oating point values between 0 and 1, and you

should use the following guidelines to appoint them: The similarity

between two queries is solely based on their intent. If the expected

result of the queries gives the same insight to a human being, their

similarity should be 1. This can include results that are correlated

(e.g. rent and crime rate in a city) or that are virtually the same. If

the given insight is similar, but not the same, the value should be a

�oating point number between 0 and 1, depending on how high the



similarity is. If the query intents do not have anything to do with

each other, the similarity should be 0. For each given alternative query

only return the assigned similarity value between 0 and 1. Separate

the similarity values using semicolons. Here is the original query:

{input_query} Here are the alternative queries: {alternative_queries}

Give me only the similarity values separated with semicolons.”

5.2.2 Ranking Algorithms. We investigate two options to com-

pute a �nal ranking of the remaining candidates. First, a purely

intent-based ranking that only considers one of the two sim-

ilarity measures shown above. However, the LLM may produce

multiple rewrites that are just slight syntactic variations of each

other. If these are a good �t according to the similarity measure,

other semantically di�erent rewrites may be pushed so far down

the ranking that the user never sees them. Therefore, we augment

the intent-based similarity with a structural similarity between

candidates of the ranking to boost diversity in the ranked candi-

dates as our second ranking algorithm. For search engine results,

the Maximal Marginal Relevance (MMR) [6] approach as been

proposed to solve this. It iteratively selects candidate rewrites (or

text documents in the original application) in the following man-

ner: First, the rewrite with the highest intent-based similarity is

picked. Then, a meta score is calculated greedily for each remaining

candidate as its intent-based similarity minus the maximum struc-

tural similarity to any of the candidates already picked. The weight

ą = 0.7 is used to trade o� the in�uence of intent-similarity and

structural dissimilarity. While Kul et al. [17] give an overview of

di�erent metrics to assess the structural similarity of SQL queries,

we opted to use a simple string comparison to assess structural

similarity using the inbuilt Python library difflib [10].

5.3 Query Correction and Execution

Wemust check each rewrite to see if it is executable on our database.

If not, we want to correct it if possible. This seems relatively easy for

syntax errors but gets more complicated if the query, e.g., contains

wrong tables. Pourreza and Ra�ei [28] describe how an LLM can

correct a generated SQL query using a correction prompt. They

observed that there is one kind of correction prompt that works

best for GPT-4 [24]. We employ a self-correction prompt inspired

by theirs. We kept aspects of the original prompt, like the initial

instructions and providing the query, the database tables, and the

foreign keys. However, instead of providing instructions to correct

the query, we provide the LLM with the error message from the

database. The correction can proceed in an iterative manner if the

proposed corrected query is again not executable.

6 EXPERIMENTAL EVALUATION

All experiments were run on a system with an Intel® Core™ i5-

8265U CPU and 16 GB of RAM. We used GPT-4o [25] with the

default API parameters in all evaluation runs, the exact version

being gpt-4o-2024-08-06. At the time of writing, this was the most

performant model from OpenAI [26]. While we did some testing

with the cheaper GPT-4o mini as well, it did not perform as well as

GPT-4o, e.g., with joins. Hence, we opted to use GPT-4o only. For

INQURE, we con�gured the number of requested rewrites to Ĥ = 5.

We use the tables from the Spider benchmark [34], downloaded

from [29]. It contains 206 SQL �les, each containing one database

Listing 5: Three sample queries, one for each di�culty level

1 --Query 2 (easy)

2 SELECT count(*) FROM college_students;

3 --Query 5 (medium)

4 SELECT school_name, total_budget,

5 budgeted_money, invested_money

6 FROM school_finance

7 WHERE year = '2024';

8 --Query 8 (hard)

9 SELECT a.author_id, a.author_name,

10 COUNT(b.book_id) as total_sales

11 FROM authors a

12 JOIN book_orders b ON a.author_id = b.book_author

13 WHERE a.author_name LIKE 'M%'

14 AND b.purchase_date > '2020-01-01'

15 GROUP BY a.author_id, a.author_name

16 ORDER BY total_sales DESC;

schema. In total, there are 957 tables from 138 di�erent domains.

As there are duplicate table names, we add a pre�x to each table

and treat all 957 tables as the basis for our algorithms to rewrite

the input queries. We devised a total of ten queries of varying

di�culty. As examples, we show one easy, medium, and hard query

in Listing 5 and explain the di�culties in rewriting them.

For rewriting Query 2, the di�culty is �nding the relevant tables,

as there are many tables related to students in the database. More-

over, the aggregation (i.e., count) must still be correct. For Query 5,

there is no table in the database which directly supplies the queried

budget. The rewriter needs to �nd suitable substitutes, calculate

the values from their contents, and then apply the �lter condition

correctly. Clearly, this requires a deeper understanding of both SQL

and the meaning of the mentioned column names. Query 8 has

more attributes in its select clause and also includes an aggregation.

The rewriter needs to �nd feasible tables and join them correctly,

which is more complicated than before, as there are more tables to

join. Moreover, the �lter condition must be retained, and the right

columns must be grouped to ensure the correct accumulation. This

is more complex than the previous queries.

As outlined in Section 3, the individual parts of the framework

can be instantiated with di�erent alternatives and combined in con-

�gurations, as the di�erent phases are orthogonal. For the rewriting,

we evaluate the spaCy Embedding Filter (E), the Simple LLM Filter

(SLLM), and the Complex LLM Filter (CLLM), each combined with

either Simple Rewriting (S) or NL Rewriting (NL). For the ranking,

we evaluate Intent-based Ranking (I) and MMR, each combined

with either Embedding Similarity (ES) or LLM Similarity (LLMS).

To assess the viability of the various combinations, we report on

the following primary measures of interest:

Quality: To evaluate if a rewrite is feasible, we set up a user

study where candidate rewrites for each input query are evaluated

by three human evaluators, who assess if the query keeps the same

intent as the original query. The study contained candidates that



E
+
S

E
+
N
L

SL
L
M
+
S

C
L
L
M
+
S

SL
L
M
+
N
L

C
L
L
M
+
N
L

0

0.2

0.4

0.6

Rewriting Approach

P
re
ci
si
o
n

Raw Rewrites

Final Rewrites

Figure 3: Precision per Rewriting Approach

the con�gurations under evaluation did not produce. We consider

a rewrite correct if two out of three evaluators marked it as such.

LLM Cost: We measure the input and output tokens separately

to compare the cost of the API calls. The cost is calculated based on

the cost of GPT-4o1 as of February 14, 2025: $2.50 per 1M tokens

input and $10.00 per 1M tokens output.

Runtime: Here, we report the wall clock time. As we do not

execute the query or any of the rewrites over actual data tables,

this only includes the rewriting itself or the cost of the individual

components, respectively.

6.1 Quality of Rewriting

For the rewriting quality, we can both look at the produced rewrites

from the �rst phase and at the rankings from the second phase.

In Figure 3, we can see the precision of the approach combi-

nations, i.e., how many of the expected total 50 rewrites for all

queries were deemed to have the same intent as the respective

input query in the user study. Where fewer than expected rewrites

were returned, we count the missing ones as incorrect. We further

distinguish between Raw Rewrites before pruning and correction

and Final Rewrites after these steps. The approaches using the em-

bedding �lter each only produced a total of 5 rewrites for simple

queries because the �lter was too simple to �nd relevant tables. As

a result, both rewriters perform poorly with this table �lter. This

underlines the need to use LLMs for table �ltering.

Among the other con�gurations, those using the NL rewriter

perform better than the same approaches with the simple rewriter.

This already answers the question of the better rewriter, leaving

us with the task of �nding the best-performing table �lter. Overall,

both the SLLM and the CLLM �lter perform similarly well, with the

CLLM �lter being slightly better. It selects more candidate tables.

Besides, con�gurations with SLLM failed to produce the full number

of rewrites for Query 4. In total, the NL rewriter works well with

either �lter when considering the �nal rewrites.

Besides analyzing the precision for each approach, we also look

at the queries individually, i.e., how many of the rewrites found for

each query by any approach were correct. Based on the previous

1https://openai.com/api/pricing/

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Input Query

P
re
ci
si
o
n

Raw Rewrites

Final Rewrites

Figure 4: Precision per Input Query

0 0.2 0.4 0.6 0.8 1

MMR+LLMS

MMR+ES

I+LLMS

I+ES

Precision@15

Figure 5: Precision of the Top-Ranked Results by Approach

observations, we limit this to LLM-based �lters. As before, we count

missing rewrites as incorrect. The resulting precisions can be found

in Figure 4. Using them, we can identify the di�culties that need to

be solved in intent-based query rewriting by looking at the queries

resulting in low precisions.

As can be seen, the hardest ones were Queries 4, 6, and 10. For

Query 4, which asked for students who own a pet cat, the �lters

struggled to �nd tables spanning both topics. With mostly non-

joinable tables to work with, the rewriters hallucinated many non-

correctable rewrites. Query 6was about �nding bookswith a certain

length in the order of their customer reviews. The failed attempts

could either again stem from the table �lters failing to identify

tables representing the customer reviews or from the rewriters

failing to interpret the intent of the query correctly. We also see

cases where the rewriters dropped parts of the query, e.g., book’s

length. Query 10 asked for drama workshop groups ranked by their

popularity per region. Besides struggling to work with window

functions, INQURE again struggled to �nd a good surrogate for the

popularity.

We have seen similar issues occur in other queries as well, albeit

to a lesser extent. Therefore, we overall identify a need for table

�lters with higher recall of relevant tables as an important area for

future work. For the rewriters, we see a need to investigate methods

that have an improved understanding of SQL, can better connect

the concepts behind data columns, and ensure that all aspects of

the input query are preserved in the results.

Except for the fourth query, pruning and non-correctability did

not make a big di�erence. As explained above, this could be because

this query brings two relatively di�erent topics together. So, the

executability of the rewrites hardly di�ers due to the hardness of

the rewrites. So, the LLM is good at using tables that actually belong

together and writing executable SQL.



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Input Queries

A
v
er
ag
e
T
ab
le
C
o
u
n
t

E SLLM CLLM

Figure 6: Tables found in Average per Query and Filter

To evaluate the quality of our ranking approaches, we used all

rewrites evaluated in the user study and ranked them based on

their similarity to the respective original query. There were, on av-

erage, 44.1 rewrites per query. The boxplot in Figure 5 summarizes

how many of the top 15 ranking rewrites were correct for each

query. When looking at the results, we can see that the LLM intent

similarity is the best in both approaches. This is likely due to the

LLM better capturing the real intent and thus the similarity than a

simple embedding.

The MMR ranking outperforms the other approach, but just by a

small margin. So, even though MMR also looks at the heterogeneity

of the queries—which could worsen the precision if there are not

many distinct relevant queries—it still performs well in giving out

meaningful alternatives as the �rst 15 queries.

6.2 Performance and Cost Evaluation

In this section, we evaluate the performance of our system’s com-

ponents, i.e., the table �lters, the rewriter, and the query correction.

6.2.1 Table Filter. The table �lters aim to reduce the number of

tables given to the rewriter to a reasonable number of relevant

tables. Although it is hard to quantify the ideal number of tables for

a query, we can use the table count to analyze the selectivity of the

�lters. Moreover, we can see how much the algorithms generalize

from the original tables. Thus, wewill also examine howmany of the

957 tables are selected by each �lter. We repeated this twice for each

�lter and show the average results in Figure 6. The plot is further

split by the individual queries since there are stark di�erences based

on the input query. As we can see, the number of tables deemed

relevant not only varies between the queries but also between the

approaches. The CLLM �lter �nds a lot of tables compared to the

other two approaches. While the spaCy �lter often �nds zero tables,

the SLLM �lter �nds at least some. Looking at all approaches, we

can conclusively say that spaCy is too restrictive, followed by the

SLLM �lter, while the CLLM �lter is the least restrictive one.

We have also measured the runtime of the above table �lter runs.

The results are shown in Figure 7. As can be seen, the spaCy �lter is

slower than the SLLM �lter despite needing no LLM calls. Since it is

also too restrictive, this clearly shows the value of using LLMs for

table �ltering. Between the two LLM-based �lters, SLLM is faster

than CLLM, as expected. The latter requires multiple calls to the

LLM and, thereby, is slower than the spaCy �lter. However, all three

�lters take 20 to 30 seconds to run, likely because our benchmark

0 10 20 30 40 50

CLLM

SLLM

E

Runtime [sec]

T
ab
le
Fi
lt
er

Figure 7: Table Filters Runtimes

E SLLM CLLM
0

2,000

4,000

6,000

Table Filter

A
m
o
u
n
t
o
f
T
o
k
en
s

Input

Output

Figure 8: In- and Output Tokens per Table Filter

contains close to 1000 tables. As such, the runtime is preferable to an

analyst manually searching relevant tables for minutes, but it still

needs much improvement to be usable for faster query execution.

Another interestingmeasurement is the number of in- and output

tokens per execution used by each �lter as reported by the API, as

these directly correspond to monetary cost. As before, we ran each

�lter twice for all queries and considered the average per approach,

as seen in Figure 8. There is one �lter without any cost, namely

the spaCy �lter. It just uses embeddings and no LLM at all. Hence,

there is no token usage connected to this �lter. In contrast, the

worst �lter regarding tokens and cost is by far the SLLM �lter, with

nearly 7000 tokens used for input, i.e., 1.7 cents. This was expected

since this �lter gives all the existing database tables to the LLM

in each call. In comparison, the CLLM �lter only uses around 200

tokens for input, i.e., 0.05 cent. The number of output tokens for

both LLM-based approaches is marginal, with around 15 for SLLM

and 50 for CLLM, i.e., 0.01 and 0.05 cents, respectively. In summary,

CLLM is signi�cantly cheaper than SLLM, with only 6% of the total

cost. However, as discussed before, the runtime of CLLM is 50%

higher than that of SLLM, so the choice of the �lter depends on the

desired trade-o� between cost and runtime.

6.2.2 Rewriter. We have run both rewriters with Ĥ = 10 for each

query and �lter combination that found tables and present the

runtime results in the boxplot in Figure 9. For the simple approach,

we can see that the average runtime is a few seconds lower than

for the NL-based one. During the execution, the latter makes two

calls to the LLM, �rst getting the query intent and then prompting

for the rewrite. Thus, the latency to the API is included twice. In

contrast, the simple rewriter only needs one call to the API. This

explains the gap between the average runtimes. Whether this is

acceptable depends on the user’s desired latency of the rewrite

system.

For the simple approach, there are also some outliers, which take

up to 26 seconds. A reason for this could be the latency of the LLM



0 5 10 15 20 25

NL

S

[sec]

R
ew

ri
te
r

Figure 9: Query Rewriter Runtimes

API as well. If the current load on the API is high, it is slower, and

hence, the latency for each single call increases.

Next, we examine the amount of input tokens used and the

resulting costs on the same set of executions as for the runtimes.

As seen in Figure 10a, it primarily depends on the number of tables

chosen as relevant by the table �lter. This was expected since both

approaches incorporate the usable tables in their prompt. Compared

to this, the query itself—which is also part of the prompt—hardly

a�ects the amount of input tokens used, especially if there is a

large number of tables. Even for the NL approach, which has two

requests to the API, no big di�erence can be seen. As the request to

get the intent has only roughly 65 tokens plus the query tokens, its

impact is insigni�cant compared to the table names in the rewrite

request.

This is di�erent for the required output tokens, as visualized

in Figure 10b. Since fewer of them are used in general, the higher

amount of output tokens used by the NL approach for the same

query is noticeable in most cases. That aside, the amount of tokens

used in the output depends on the individual query. A reason for

this could be the queries di�ering in complexity and, thus, the

length of the rewrites. For example, Query 2 and its rewrites are

much shorter than Query 8.

As the overall monetary cost of LLM calls is directly derived

from the number of input and output tokens, it exhibits the same

dependencies as described above. Depending on the amount of

tables and the query, costs can reach up to 2.5 cents for one iteration

of rewriting, i.e., 10 rewrites. This is, for example, reached by the

NL rewriter for Query 10 with 75 input tables. A good table �lter is

needed to reduce the amount of input tokens and keep the costs low.

The output cost can only be reduced by producing fewer rewrites

or using the simple rewriter since it is generally a bit less costly.

However, as most queries cost below 1 cent, both rewriters are still

a feasible solution.

6.2.3 Ranking. While we have already investigated the ranking

quality in Section 6.1, we now also want to see how the approaches

perform in terms of quantitative measures. Figure 11 shows a box-

plot of each ranking approach’s runtime for each query. As expected,

MMR is generally slower than its only intent-based counterpart,

and the variants using embedding similarity are generally faster

than those using the LLM. This directly presents a trade-o�: Ap-

proaches that yielded a higher precision in Figure 5 are, in turn,

slower. However, we also see that even the slowest approach is

about 50% faster than the table �lter or, in other words, about as

fast as the rewriter. As such, all these runtimes are still acceptable

but could be improved in future work.

In terms of cost, we note that embedding similarity does not

require calls to the LLM and, as such, does not incur any additional

API costs. At the same time, MMR also does not require additional

0 20 40 60 80 100
0

2,000

4,000

Number of Tables

In
p
u
t
T
o
k
en
s

S NL
0

0.5

1

C
en
t(
$)

(a) Input Tokens and Cost per Query Rewriting depending on the

Amount of Tables found by the Filter

31 2 5 6 7 8 9 104
0

500

1,000

1,500

Input Query

O
u
tp
u
t
T
o
k
en
s S NL

0

0.5

1

1.5

C
en
t(
$)

(b) Output Tokens and Cost per Query Rewriting depending on the

Input Query

Figure 10: Tokens and Cost of Query Rewriting Approaches

0 10 20 30 40

MMR+LLMS

MMR+ES

I+LLMS

I+ES

Runtime [sec]

R
an
k
in
g
A
p
p
ro
ac
h

Figure 11: Runtimes of Ranking Combinations

tokens since we compute the structural similarity between queries

without any LLM involvement. Hence, the only costs incurred are

the input and output tokens of the LLM similarity. There, we observe

an average total of 0.9 cents, most of which is spent for the average

of 3000 input tokens.

6.2.4 �ery Correction. To see how e�ective the correction is,

we measure the number of iterations needed per non-executable

rewrite, i.e., the number of calls to the LLM required to correct the

query. Most queries (97 out of 131) are corrected in one iteration.

Only a few outliers need 2 or even 3 iterations (11 and 3). More

iterations were not allowed. In total, only 20 out of 880 total queries

were not correctable, i.e., around 2%. So, of the 131 queries that

needed correction, around 15% could not be corrected. In 18 of these

cases, this was due to the LLM repeatedly using tables that were

not in the database. Together with the insight that most queries

only needed one correction, we conclude that the correction works

e�ciently.



7 CONCLUSION AND OUTLOOK

We presented INQURE, a �rst working solution to the novel prob-

lem of intent-based query rewriting that strives toward query eval-

uation over inaccessible data by formulating queries over alternate

tables that eventually return the same human insights. INQURE

involves an LLM for the core task of rewriting and additional phases

to enhance quality and limit cost. The experimental results showed

that it is indeed often possible to �nd meaningful rewrites and that

the monetary cost of involving an LLM is rather negligible.

It is relatively easy to envision alternate ways to rank or cluster

candidate rewrites or to compute structural similarity. Also, tuning

the used LLM prompts or ultimately �ne-tuning the LLM for this

speci�c task carries the potential to improve the quality of the �nal

rewrites. We have not yet explored whether intent-based rewrites

can also lead to faster query execution. It is clear that the overhead

induced by the remote LLM can be prohibitively large for some

low-latency queries. Therefore, we see the use of a local LLM as

pivotal for real-world implementations of our system.With that, we

still see a potential for long-running analytical queries, particularly

over vast datasets and architectures like Apache Spark, and when a

local LLM instance can be installed. Especially in these cases, it can

be worthwhile to include the expected query runtime or the query

complexity into the ranking criteria. The latter is also interesting in

regards to the interpretability of the rewritten queries. Once there

is a good understanding of the quality of the rewrites, it can be

interesting to investigate situations when the otherwise accurate

rewrite leads to substantially di�ering insights. This could help to

identify wrong facts derived from one data source compared to the

evidence found in others.

REFERENCES
[1] Ra� Ahmed, AllisonW. Lee, AndrewWitkowski, Dinesh Das, Hong Su, Mohamed

Zaït, and Thierry Cruanes. 2006. Cost-Based Query Transformation in Oracle. In
Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B.
Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha,
and Young-Kuk Kim (Eds.). ACM, 1026–1036. http://dl.acm.org/citation.cfm?id=
1164215

[2] Alexander Aiken, Jennifer Widom, and Joseph M. Hellerstein. 1992. Behavior
of Database Production Rules: Termination, Con�uence, and Observable De-
terminism. In Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 2-5, 1992, Michael
Stonebraker (Ed.). ACM Press, 59–68. https://doi.org/10.1145/130283.130296

[3] Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler, and
Martin Schäler. 2020. On the Usefulness of SQL-Query-Similarity Measures
to Find User Interests. IEEE Trans. Knowl. Data Eng. 32, 10 (2020), 1982–1999.
https://doi.org/10.1109/TKDE.2019.2913381

[4] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. SODA: Generating SQL for Business Users. Proc. VLDB Endow.
5, 10 (2012), 932–943. https://doi.org/10.14778/2336664.2336667

[5] Gregory Borodin and Yaron Kanza. 2020. Search-by-example over SQL reposito-
ries using structural and intent-driven similarity. Data Knowl. Eng. 128 (2020),
101811. https://doi.org/10.1016/J.DATAK.2020.101811

[6] Jaime G. Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-Based
Reranking for Reordering Documents and Producing Summaries. In 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 335–336. https://doi.org/10.1145/290941.291025

[7] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. 1990. Indexing by Latent Semantic Analysis. Journal
of the American society for information science 41, 6 (1990), 391–407.

[8] Rui Dong, Jie Liu, Yuxuan Zhu, Cong Yan, Barzan Mozafari, and Xinyu Wang.
2023. SlabCity: Whole-Query Optimization using Program Synthesis. Proc. VLDB
Endow. 16, 11 (2023), 3151–3164. https://doi.org/10.14778/3611479.3611515

[9] Christiane Fellbaum. 1998. WordNet: An electronic lexical database. Cambridge,
MA: MIT Press 2 (1998), 678–686.

[10] Python Software Foundation. 2025. Python Di�ib Library. https://docs.python.
org/3/library/di�ib.html. accessed on 04.02.2025, Copyright 2001-2025.

[11] Richard A. Ganski and Harry K. T. Wong. 1987. Optimization of Nested SQL
Queries Revisited. In Proceedings of the Association for Computing Machinery Spe-
cial Interest Group on Management of Data 1987 Annual Conference, San Francisco,
CA, USA, May 27-29, 1987, Umeshwar Dayal and Irving L. Traiger (Eds.). ACM
Press, 23–33. https://doi.org/10.1145/38713.38723

[12] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2 ed.). Prentice Hall Press, USA.

[13] Jiafeng Guo, Xueqi Cheng, Gu Xu, and Xiaofei Zhu. 2011. Intent-aware
query similarity. In Proceedings of the 20th ACM Conference on Information and
Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28,
2011, Craig Macdonald, Iadh Ounis, and Ian Ruthven (Eds.). ACM, 259–268.
https://doi.org/10.1145/2063576.2063619

[14] Matthew Honnibal, Ines Montani, So�e Van Landeghem, Adriane Boyd, et al.
2020. spaCy: Industrial-strength natural language processing in python. https:
//spacy.io/. accessed on 04.02.2025, Copyright 2016-2025.

[15] Won Kim. 1982. On Optimizing an SQL-like Nested Query. ACM Trans. Database
Syst. 7, 3 (1982), 443–469.

[16] Leo Köberlein, Dominik Probst, and Richard Lenz. 2024. Quantifying Seman-
tic Query Similarity for Automated Linear SQL Grading: A Graph-based Ap-
proach. CoRR abs/2403.14441 (2024). https://doi.org/10.48550/ARXIV.2403.14441
arXiv:2403.14441

[17] Gökhan Kul, Duc Thanh Anh Luong, Ting Xie, Varun Chandola, Oliver Kennedy,
and Shambhu J. Upadhyaya. 2018. Similarity Metrics for SQL Query Clustering.
IEEE Trans. Knowl. Data Eng. 30, 12 (2018), 2408–2420. https://doi.org/10.1109/
TKDE.2018.2831214

[18] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.
Issue 8.

[19] Jie Liu and Barzan Mozafari. 2024. Query Rewriting via Large Language Mod-
els. CoRR abs/2403.09060 (2024). https://doi.org/10.48550/ARXIV.2403.09060
arXiv:2403.09060

[20] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.
ACM 38, 11 (1995), 39–41. https://doi.org/10.1145/219717.219748

[21] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu
Ramakrishnan. 1990. Magic is Relevant. In SIGMOD Conference. ACM Press,
247–258.

[22] Thomas Neumann. 2025. Improving Unnesting of Complex Queries. In Daten-
banksysteme für Business, Technologie und Web (BTW 2025) (LNI), Meike Klettke,
Ralf Schenkel, Andreas Henrich, Daniela Nicklas, Maximilian E. Schüle, and
Klaus Meyer-Wegener (Eds.), Vol. P-361. Gesellschaft für Informatik e.V., 25–47.
https://doi.org/10.18420/BTW2025-01

[23] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary Queries. In
BTW (LNI), Vol. P-241. GI, 383–402.

[24] OpenAI. 2025. OpenAI Models. https://platform.openai.com/docs/models. ac-
cessed on 14.02.2025.

[25] OpenAI. 2025. OpenAI Models GPT-4o. https://platform.openai.com/docs/
models/gpt-4o#gpt-4o. accessed on 04.02.2025.

[26] OpenAI. 2025. OpenAI Overview. https://openai.com/. accessed on 14.02.2025,
Copyright 2015-2025.

[27] Carlos Ordonez. 2010. Optimization of Linear Recursive Queries in SQL. IEEE
Trans. Knowl. Data Eng. 22, 2 (2010), 264–277. https://doi.org/10.1109/TKDE.
2009.83

[28] Mohammadreza Pourreza and Davood Ra�ei. 2023. DIN-SQL: Decomposed In-
Context Learning of Text-to-SQL with Self-Correction. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023 (NeurIPS). Curran Associates, Inc., 36339–36348.

[29] Dragomir R. Radev. 2024. Spider Website. https://yale-lily.github.io/spider.
accessed on 19.02.2025, data downloaded in November 2024.

[30] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cli� Leung. 1996. Complex Query
Decorrelation. In ICDE. IEEE Computer Society, 450–458.

[31] spaCy. 2025. Englisch spaCy Models. https://spacy.io/models/en. accessed on
03.02.2025, Copyright 2016-2025.

[32] spaCy. 2025. Large Englisch spaCy Models. https://spacy.io/models/en/#en_
core_web_lg. accessed on 03.02.2025, Copyright 2016-2025.

[33] Fanghua Ye, Meng Fang, Shenghui Li, and Emine Yilmaz. 2023. Enhancing
Conversational Search: Large Language Model-Aided Informative Query Rewrit-
ing. CoRR abs/2310.09716 (2023). https://doi.org/10.48550/ARXIV.2310.09716
arXiv:2310.09716

[34] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. CoRR abs/1809.08887
(2018). arXiv:1809.08887 http://arxiv.org/abs/1809.08887

[35] Xuanhe Zhou, Guoliang Li, Jianming Wu, Jiesi Liu, Zhaoyan Sun, and Xinning
Zhang. 2023. A Learned Query Rewrite System. Proc. VLDB Endow. 16, 12 (2023),
4110–4113. https://doi.org/10.14778/3611540.3611633

http://dl.acm.org/citation.cfm?id=1164215
http://dl.acm.org/citation.cfm?id=1164215
https://doi.org/10.1145/130283.130296
https://doi.org/10.1109/TKDE.2019.2913381
https://doi.org/10.14778/2336664.2336667
https://doi.org/10.1016/J.DATAK.2020.101811
https://doi.org/10.1145/290941.291025
https://doi.org/10.14778/3611479.3611515
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://doi.org/10.1145/38713.38723
https://doi.org/10.1145/2063576.2063619
https://spacy.io/
https://spacy.io/
https://doi.org/10.48550/ARXIV.2403.14441
https://doi.org/10.1109/TKDE.2018.2831214
https://doi.org/10.1109/TKDE.2018.2831214
https://doi.org/10.48550/ARXIV.2403.09060
https://doi.org/10.1145/219717.219748
https://doi.org/10.18420/BTW2025-01
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models/gpt-4o#gpt-4o
https://platform.openai.com/docs/models/gpt-4o#gpt-4o
https://openai.com/
https://doi.org/10.1109/TKDE.2009.83
https://doi.org/10.1109/TKDE.2009.83
https://yale-lily.github.io/spider
https://spacy.io/models/en
https://spacy.io/models/en/#en_core_web_lg
https://spacy.io/models/en/#en_core_web_lg
https://doi.org/10.48550/ARXIV.2310.09716
http://arxiv.org/abs/1809.08887
https://doi.org/10.14778/3611540.3611633

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions and Outline

	2 Related Work
	3 The INQURE Workflow
	4 Phase 1: Filtering and Rewrite Generation
	4.1 Table Filtering
	4.2 LLM-based Rewrites

	5 Phase 2: Pruning and Ranking
	5.1 Rewrite Pruning
	5.2 Rewrite Ranking
	5.3 Query Correction and Execution

	6 Experimental Evaluation
	6.1 Quality of Rewriting
	6.2 Performance and Cost Evaluation

	7 Conclusion and Outlook
	References

