
University of Kaiserslautern-Landau (RPTU)

Schema-based
Column Reordering for
Dremel-encoded Data

Patrick Hansert and Sebastian Michel

BiDEDE@SIGMOD 23

Seattle, WA, USA



2023/06/18 2

Ingestion in Data Lakes

Buffer and determining the sort order can be memory intensive!

 → Can we determine the sort order before any data is buffered,

i.e., just with the schema?

Data Source SortBuffer Parquet File

Determine 

Good Order

e.g., Stream, 

MR Job, ...



2023/06/18 3

{"B": {"C": 3, "D": 7, "E": {"F": 5, "G": 2}}}

{"B": {"C": 3, "D": 7}}

{"A": 4}

Dremel Encoding1

● Column-oriented storage of nested data

● Requires schema

● One column for each root-to-leaf path

● Encode NULL values as definition level (DL):

Number of present optional steps

A B.C B.D B.E.F B.E.G

0 1 1 2 2

0 1 1 1 1

1 0 0 0 0

A? B?

C D E?

F G

.

1 Melnik et al. “Dremel: Interactive Analysis of Web-Scale Datasets”, VLDB 2010



2023/06/18 4

Column Reordering

● Run-length encoding employed for

definition levels & Boolean columns

● Sensitive to row order

 Optimal order is NP-hard→ 2

● Heuristic: Sort lexicographically

 Optimal column order is still NP-hard→ 2

● Increasing-cardinality heuristic2:

Sort rows lexicographically, considering 

columns in the order of their increasing 

cardinality

A B.C B.D B.E.F B.E.G

0 0 0 0 0

0 1 1 1 1

0 1 1 2 2

1 0 0 0 0

1 1 1 1 1

1 1 1 2 2

 → 22 Runs

2 Lemire and Kaser “Reordering Columns for Smaller Indexes”, Inf. Sci. , Vol. 181, No. 12



Schema:

Block-based Sorting



2023/06/18 6

Key Observation: Interdependence

For definition levels, the schema details:

● Min & Max value  cardinality→

● Dependencies

Each DL determines the DL

of all paths with a prefix of its

optional nodes

A B.C B.D B.E.F B.E.G

0 0 0 0 0

0 1 1 1 1

0 1 1 2 2

1 0 0 0 0

1 1 1 1 1

1 1 1 2 2

A? B?

C D E?

F G

.

But: the increasing-cardinality heuristic assumes data independence!



2023/06/18 7

Blocks of Dependent Data

Consider data block each optional node affects:

● Columns it appears on

● Rows where parent is present

● Nested wrt. schema

● Repeated wrt. sort order

A B.C B.D B.E.F B.E.G

0 0 0 0 0

0 1 1 1 1

0 1 1 2 2

1 0 0 0 0

1 1 1 1 1

1 1 1 2 2

A? B?

C D E?

F G

.

 → Upper bound:

Each block at most doubles runs

B.E.F : 2

B.C : 2A : 1



2023/06/18 8

Sort Blocks by Decreasing Size

B.E.F : 2

B.C : 2A : 1

● All block orderings adhere to tree order

● Nodes with many columns first

 upper bound is minimized→

● Deriving and ordering blocks in (n log n) �

using heapsort

A B.C B.D B.E.F B.E.G

0 0 0 0 0

1 0 0 0 0

0 1 1 1 1

1 1 1 1 1

0 1 1 2 2

1 1 1 2 2

 → 16 Runs

B.C

B.E.F

A



Evaluation



2023/06/18 10

Experimental Setup

● Spark 3.2.0 & Parquet

● Extract schema and then sort in 

multiple ways:

➔ Unsorted

➔ Increasing-cardinality (schema)

➔ Block-based (schema)

➔ Exact

Yelp Steam Tweets GitHub

Total Nodes 61 54 1,101 705

Optional Nodes 49 18 748 134

Boolean Leaves 0 0 58 43

Document Count 150,346 74,821 79,219 218,939



2023/06/18 11

Decreased Runcount

Yelp

Ste
am

Tweets

GitH
ub

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

block-based increasing-cardinality

#
ru

n
s

 in
 a

ff
e

c
te

d
 c

o
lu

m
n

s

● Number of runs in definition level and 

Boolean columns

● Relevant metric for bitmap Indexes

● Block-based between factor 1.19 and 

2.06 better

● Relative gains smaller when considering 

all columns



2023/06/18 12

Yelp

Steam

Tweets

GitH
ub

-5%

0%

5%

10%

15%

20%

25%

30%

block-based increasing-cardinality unsorted

si
ze

 c
h

a
n

g
e

 r
e

la
ti

v
e

 t
o

 e
x

a
c

t
Compression Rate

● File size relative to increasing-

cardinality with exact cardinalities

● Yelp and Tweets very close to Exact

● Steam and GitHub still within 10%

 lower optional node count→

● All results better than unsorted

● Block-based on average 0.53% better 

than increasing-cardinality



2023/06/18 13

Conclusion

● Schemas provide ample information for column reordering

● Block-based improves runcount  between factor 1.19 and 2.04 over 

increasing-cardinality

 Good for → bitmap indexes over the structure

● Comparable to compression rates (within 10% or less) despite:

– Use less information

– Less computationally intensive

– Fewer columns considered


